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MODEL VALIDATIONS AND PREDICTIONS FOR WATER BARRDZR DEFENSE 

INTRODUCTION 

The purpose of this report is to provide both validations and predictions for explosion plume 
behavior. The experiments presented in this report were conducted in July, 1995, in a water-filled 
quarry facility in Rustburg, Virginia, operated by Dynamic Testing, Incorporated, a subsidiary of NKF 
Engineering, Incorporated. The data obtained from these tests are used to validate a computational 
hydrodynamics model for plume predictions. 

Background 

This report was prepared in support of the Water Barrier Ship Self Defense Concept, managed by 
C. E. Higdon of the Naval Surface Warfare Center, Dahlgren Division (NSWCDD), Dahlgren, 
Virginia, Code G23. Under the sponsorship of the Office of Naval Research (ONR), Arlington, 
Virginia, the Center is developing technology that has the potential to be very effective in defending 
Navy platforms against high-speed, low-flying antiship missiles (ASMs). The concept uses a "wall of 
water" to provide a low-cost, universal terminal defense system for ships. The "wall of water" or 
"water barrier" is formed from the shallow detonations of multiple underwater explosives to protect 
the ship from attacking ASMs. This concept can be employed to slow or stop debris and warhead 
fragments from missiles killed at very short range to preclude significant damage to the defending 
ship. Furthermore, the barrier would defeat the fusing and structure of ASMs that have penetrated the 
inner self-defense layer. Further details of this concept may be found in [1]. 

In a recent work [2], observations of a large set of experiments were used to improve a set of 
empirical relations for modeling underwater explosion bubbles in an incompressible medium (water). 
While such relations were derived and reported as long ago as 1948 by Cole [3] these approximations 
were not valid for very shallow depths due to simplifying assumptions that were made. Using the 
Rayleigh-Plesset equation for modeling a spherical adiabatic gas bubble oscillating in an infinite 
incompressible medium, without any simplifying assumptions, together with new measurements of 
shallow depth explosion bubbles, the new empirical relations provide more accurate initial conditions 
for hydrodynamics computer codes. 

Explosion Dynamics 

Upon detonation of an underwater explosive a shock wave moving away from the charge is 
emitted. This wave reflects off the surface as a rarefaction wave which travels back down through the 
gas globe of detonation products. Due to the tension created behind the. rarefaction wave, a whitened 
area of cavitation is formed that rises from the surface. Under the surface a bubble is formed from the 
combustion products, which expands rapidly due to the initially high pressures of its internal gases. 
The early expansion of the bubble is nearly spherical, after which a water plume forms above the 
bubble. Eventually, the bubble expands to its maximum volume. If this maximum volume has an 
equivalent spherical radius that is between approximately one and two times the initial charge depth, 
a second jet moving downward through the bubble will form during its collapse to a minimum volume. 
The duration from the time of the detonation to the first collapse is referred to as the "bubble 
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period." Since the jet strikes the bottom of the bubble before the minimum volume is attained, the 
bubble forms an annular region. As the annular bubble re-expands, secondary plumes are ejected 
radially, surrounding the central initial plume. 

In the case of a line charge or several point charges placed sufficiently close together, a 
cylindrical bubble is formed. The initial plume forms a wall of water above the line of charges. 
Secondary plumes erupt on either side of the central plume after the first bubble collapse. 

The shock related phenomena described above typically occurs on the order of a millisecond or 
less. For the examples discussed in this report, bubble periods are approximately 0.6 s with secondary 
plumes erupting shortly afterward. The entire duration, from the detonation to the plume falling 
back down to the water surface, usually lasts between 4 and 6 seconds. 

Model Approach 

The computer codes used for the simulations and modeling presented in this report are based on a 
generalized formulation of hydrodynamics [2,4-10]. This method is well suited for the study of 
shallow-depth explosion plumes for the following reasons: 

1. The "water" or "liquid" region is modeled as incompressible, thereby allowing for time steps 
proportional to the inverse of the water velocity as opposed to the much smaller time steps that 
a compressible formulation would require based on the speed of sound in water. This is important 
because plume behavior occurs on the order of seconds. 

2. The model allows for regions of "spray," which is typical of plume behavior in which a well 
defined interface between the bubble and water or especially the water and the air does not exist. 

3. The computational model uses a fixed "Eulerian" grid providing for generality in studying 
complex bubble dynamics and free surface topology changes. For shallow-depth explosions this 
includes the underwater bubble forming one or more annular regions as a downward moving jet 
intersects the bottom surface of the bubble as it collapses, in addition to the radial plumes ejected 
on the bubble's second expansion, and the eventual venting of the bubble into the atmosphere. 

Our approach has some similarities to the volume of fluid (VOF) approach developed by Hirt and 
Nichols [11] and, more recently, by Kothe and Mjolsness [12]. Our method differs in some 
important ways from these typical VOF methods. First, the theory behind the model was designed 
specifically for violent surface motions characterized by collisions of different portions of the free 
surface. In particular, when collisions occur, the VOF variable will often attain a value larger than one 
(due to numerical error or fluid elements running into each other). When this occurs, VOF 
formulations simply truncate the overage. This process violates conservation of mass and can 
introduce small instabilities by increasing the total energy of the solution. Using the generalized 
formulation, density is redistributed in such a way that the total mass is conserved and the 
momentum is redistributed so that the energy is nonincreasing (but may decrease when liquid 
collisions occur). This method solves conservation of mass and momentum equations, which are 
subject to density and pressure (when cavitation is an issue) constraints. The density constraint, 
together with the conservation of mass equation, are equivalent to the usual divergence free 
constraint for incompressible flow in regions where the density is at its maximum (liquid) value. 
These equations are solved numerically using a split step procedure. First, the conservation equations 
are approximated without regard to the constraints using a second order Godunov Method with 
monotonized slope limiting, as described in [13]. Next, the density constraint is imposed through the 
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solution of a variational inequality, which becomes a linear complimentarity problem upon 
discretization. Finally, the pressure is determined using a projection method discretized using a finite 
element method. This algorithm has been implemented for both a two-dimensional (2-D) (or axially 
symmetric) code BUB2D [2,4-7,9], and a three-dimensional (3-D) code in generalized coordinates 
BUB3D [8-10]. 

THE COMPUTATIONAL MODEL 

Model Equations 

The computational model used for both the 2- and 3-D codes is based on a generalized 
formulation of hydrodynamics. This formulation uses a fixed spatial domain Q, where the density p, 
velocity u, and the pressure/? are governed by the mass and momentum conservation equations 

p,+V.(pu) = 0 (1) 

(pu), + V»(puu) = -pgk-V/7 (2) 

subject to the constraint 

P^Po, (3) 

where p0 is the constant density of the incompressible liquid. In (2) -k is the unit vector in the 
direction of the gravitational force, and g is the gravitational constant. In regions where p = p0, 
Eq. (1) becomes the usual divergence free condition for incompressible flow. We define the time 
varying "liquid" domain D(f) by 

D(0 = {x:p(x,0 = Po}- (4) 

The non-liquid domain is defined using 

Q-D(0 = A(0uB(0uC(0, (5) 

where the regions A, B, and C are disjoint. Within these regions, the pressure is assumed to be 
uniform; that is 

PA        xeA(0 

p(x,t) = \pB(t)   xeB(f). (6) 

Pc       xeQ» 

In the above, pA represents the constant ambient "air" pressure. The "bubble" pressure, pB(t), is 
usually determined using an adiabatic gas assumption 

PB{t)=c{VB{t)Y; (7) 

where c is constant, y is the (constant) ratio of specific heats of the bubble gases, and VB{t) is the 
bubble volume, which can be determined using 
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yB{t)=  J fl-ÄllU. (8) 

Finally, pc is the "cavitation" pressure, which is usually set to the vapor pressure of the liquid at 
some specified temperature. When cavitation is to be modeled, an additional constraint is imposed on 
the pressure, namely that p(x,t)>Pc (see [8]). For the results presented here, this constraint was 

not imposed, that is, pc = -°°- 

Numerical Algorithm 

Assume that the density and velocity, p",u" at time step n are known together with the pressure 
gradient at the previous half step, Vp"'1'2. This solution is evolved from time t = tn -»t" + T = t 
using the following three step time split procedure. 

Convection 

The solution is first advanced (p",u")->(p,ü) by "solving" the conservation laws (1-2) without 

including the term Vp on the right-hand side of Eq. (2) and without regard to the constraint Eq. (3). 
This step is fully discretized using a formally second-order Godunov-type method, which uses slope 
limiting in space and explicit predictor-corrector time stepping (e.g., [13]). Although the pressure 
gradient is not explicitly added to the momentum here, it is used within the predictor step of the 
Godunov method. Further details of this step may be found in Refs. 4 and 6 for axially symmetric 
flow problems. 

Redistribution of Density and Momenta 

Next, the density and momenta are redistributed (p,fi)-> (p,ü ) so that the constraint Eq. (3) is 

satisfied, the global conservation of mass and momenta are maintained, and the energy is 
nonincreasing. The density is redistributed using an approximate solution to the obstacle problem 

V2H = \Po-P   if   H>\ (9a) 
[    0       if   H = 0 

and setting 
p = p + V2i7. (9b) 

These equations have been derived by considering a Boltzmann formulation for modeling inelastic 
fluid collisions and are discussed in greater detail in Refs. 4, 6, and 9. These references also contain 
details of the numerical discretization of Eq. (9) and the solution procedure, which employs a 
constrained direction preconditioned conjugate gradient method. The momenta redistributions are 
determined as solutions of two (or three for 3-D problems) elliptic self-adjoint problems 

pu = pu + V2(//u"). (10) 

Discretizations of Eq. (10) yield systems of linear equations with diagonally dominant matrices, 
which are efficiently solved using a diagonally preconditioned conjugate gradient method. The 
importance of this step to the overall accuracy and stability of the algorithm was discussed in Ref. 7. 
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As mentioned in the introduction, this redistribution step is a major distinguishing feature between 
this algorithm and other VOF approaches (e.g., [11,12]) which would simply truncate the density 
values. 

Multiple Bubbles and Venting 

After the redistribution, p = p"*\ and the new nonliquid regions are then determined along with 
the pressure in each of its connected subsets. In the computational space, the new liquid region, 
D"*1 = D(^]), is defined to be the collection of grid cells C, such that 

p?x>(\-ep)pö, (11) 

where pf1"1 is the density in cell  C,. For shallow-depth explosion bubbles, the choice of ep is 

important. In general, small values of ep will cause cells with only slightly less density than the liquid 

to be treated as regions with uniform pressure, while larger values will cause more of the "spray" 
(where 0 < p < p0) to be treated as a variable density incompressible region. 

In addition to the distinction in the nonliquid regions designated by "air" A, "bubble" B, and 
"cavitation" C, each component (connected disjoint subset) of B is also accounted for. That is, 
suppose 

K" 

B" — T>" 

k=\ 

where K" is the number of distinct bubbles at time step n, and Bk is the component corresponding to 

bubble k at time step n. When the bubble components Bk remain distinct, their pressures pi behave 
adiabatically 

where Vk represents the volume of Bk, and ck is constant for all steps n for which the component 
has no interactions. If a bubble component splits into two distinct regions, say, Bk -> B^luB^\ the 
new pressures p"+1 and p„x are computed assuming the volume changes occurred before the split; 
that is, 

B+l _     n+l _        PkWk ) 

Similarly, if two distinct bubbles merge into a single component region, for example, B"\jBn
m -» B^\ 

the new pressure is given by 

These formulas have been extended to the general case treating any finite number of bubbles 
merging and splitting in [5]. Whenever merging occurs, the pressure of the new component changes 
instantaneously. Similarly, when a bubble comes in contact with the air region (that is a cell in Bk is 
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adjacent to a cell in A), the bubble is said to "vent" into the air with the pressure instantaneously 
changing to the air pressure. This is obviously a crude approximation to the finite amount of time 
the venting would actually take or to the partial venting of the bubble. In particular, if the relatively 
thin layer of water between the bubble and air is under-resolved by the computational grid, the 
computed bubble may vent prematurely causing gross errors in the subsequently computed dynamics. 
In order to prevent this premature venting, the value of ep in (11) is allowed to depend upon both 
time and space by the prescription 

e =ef=<k    C,eN(A-)> (12) 
p [eB     otherwise 

where N(A") is the set of cells that are either in or adjacent to the time varying domain A". 

Consider the case where p^^-e^Po so that C,eD" but, on the next step, the density 

decreases below the liquid cutoff, that is, pf <(l-c;")p0. If there is a cell in the neighborhood that 

was nonliquid (Ct eN(C;)n(A"uB"uC")) then  cell   C, would be merged into  the  nonliquid 

component containing that cell. If there are more than one nonliquid components in the 
neighborhood, these components are merged together. However, the case when there are no 
nonliquid neighboring cells is more problematic. Since the velocity filed in the liquid is divergence 
free, the density can decrease only because of numerical error. Previously this case was treated by 
resetting p?x =(l-e/")p0 so that the cell remained a liquid cell. However, this obviously adds mass, 

and violates the conservation law. Furthermore, this added mass can be large in the special case when 
e"_1 = e , but e"=eB. Even without a decrease in density, the added mass in this case would be 

U -eB)p0\C, |, where \C, | is the volume of C,. In order to avoid these potentially large errors in 

added mass, the density is no longer modified in this case. Instead, the cell remains part of the liquid 
domain, C;eD"+1. Thus, the liquid domain is now defined as the collection of cells C, such that 

either Eq. (11) holds or N(C,)cD". That is: 

B"+l=[jCl:pr1>(l-£p)p0OT N(C,)cD". (13) 

Pressure Projection 

In the nonliquid region ü = u"+1. However, ü is not consistent with Eq. (2) in the new liquid 
region. In this region the velocity is corrected, ü->uM+1, using the gradient of the new pressure, 
V>"+1/2. The pressure pn¥V2is the solution of 

TV» VP 

VP   ) 
= V.Ü    in D"+1. (14) 

The new velocity, given by 

Vn"+1/2 

p"+1 
(15) 
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is divergence free in D"+1 and, thus, is consistent with Eq. (1). Equations (14) and (15) define a 
projection u"+1 = P(n) onto the space of divergence free velocities. This equation is discretized using 
a finite element method with bilinear (in 2-D) or trilinear (in 3-D) elements. This spatial 
discretization produces an approximate projection which has been analyzed in Ref. 14. The resulting 
linear system from the discretization of Eq. (14) is solved using an incomplete Cholesky 
preconditioned conjugate gradient method. 

To determine the pressure uniquely using Eq. (14), boundary conditions must be specified. On 
those portions of the boundary of D"+1 that correspond to "wall" boundaries of Q, a Neumann 
condition is specified, namely 

tf = ^i.n. (16) 
cm      T 

Note that this condition, together with Eq. (15), implies that u"+1»n = 0 along wall boundaries. Since 
the pressure is assumed to be continuous, Dirichlet conditions for the pressure along the nonliquid 
regions are determined according to Eq. (6). In particular, we specify 

p(x,t)-- 

pA     xedA^ndD'*1 

pf   xtdB^ndD"*1 (17) 

pc     xetX:"+1n(2D"+1 

along those boundaries common to the nonliquid regions. Hydrostatic pressure Dirichlet conditions 
are set on other portions of the boundary of Q. to model "cutoff boundaries. 

Initial  Conditions 

For a single charge, the bubble is initialized as a spherical "void," with zero density, radius A0, 
and pressure pi, surrounded by a liquid region at rest. In the case of a line charge or a series of single 
charges placed sufficiently close in a straight line, the bubble is initialized as a circular cylinder of 
infinite length. The initial values for the bubble radius and pressure depend on the hydrostatic 
pressure at the depth of the charge, the charge weight, and empirical constants which depend on the 
charge type, derived from considering the equation of motion of a spherical bubble in an infinite 
incompressible medium. In this case, the bubble remains spherical, and its radius oscillates periodically 
between its minimum, Amin, and maximum, Amax, values. 

Empirical Relations 

The following empirical relations are valid for shallow-depth underwater explosions (see Ref. 2) 

Amin = qWU3 (18) 

P~ = d + PA (19) 

G(a)S- 
cc 

V«*HOV/3 

I-a-3" 
= fpJ13 (20) 
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PI=P.(\-Y) 
1-a3 

\-a 3(1-7) 
(21) 

J 

In the equations listed above, q is the empirical minimum radius constant, which depends on the 
charge type; W is the charge mass; d is the initial charge depth; and pA is the ambient air pressure. 
If d is measured in units of feet and pA in feet of water, then P„ is the hydrostatic pressure at the 
charge depth in units of feet of water. In Eq. (20), y is the ratio of specific heats for the bubble 

gases, and J„ is the empirical maximum radius constant. In the above equations, the value for a 
must be determined as the solution to Eq. (20) with a given value for the right-hand side. This can be 
done approximately using Newton's method. The value a is also the ratio of maximum to minimum 

bubble radii, 

a = (22) 

so that 

Amm — «/_ 
l-«3(1-y) 

l-cT3r 

y/3 
W ■1/3 

1/3 
= J. 

w ■1/3 

1/3 
(23) 

In cases when the depth ranges between 100 and 1000 ft, it was noted in Ref. 3 that values for Ja 

remain nearly constant. Because of this and the interest in the relatively deeper charge depths, 
subsequent reports (e.g., [15,16]) used Eq. (23) under this assumption. However, Ja depends on a, 

which can change significantly, particularly at shallow depths. This dependence was studied in detail 

in Ref. 2. 

For line charges approximated as a circular cylinder of infinite  extent,   the  corresponding 

formulas were derived in Ref. 2. 

Ar=i(2D)M112 

V3 

a(2D) = a3'2 

2     ,  3/2 

(24) 

(25) 

(26) 

(27) 

A(2D) _   j(2D) 

\-{a(2D)r2y 

1/2 

M 1/2 

1/2 
(28) 

In Eqs. (24) and (28), M is the mass per unit length. 

For the tests considered in this study, all charges were Composition C-4. Based on our previous 
analysis (Ref. 2, Table 3-7), the values used in this study are y = 1.34, q = 0.286, and J„ =15.3. 
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Shock Effects 

It was noted by Kedrinskii in Ref. 17 that using an incompressible liquid model for shallow-depth 
explosion simulations generally underpredicts the plume heights for early times. It has been 
demonstrated in Refs. 2 and 17, that an indentation of the free surface directly above the charge will 
increase the plume heights predicted by an incompressible liquid model. This indentation represents 
the effects of spalling from the reflection of the detonation shock wave from the surface. In addition 
to this reflection, shock interaction from the simultaneous detonation of multiple charges has been 
shown to cause plume fingering between the initial charge locations. An empirical model for this 
phenomenon is shown in Fig. 1. 

Reflected Charge Locations 

A •                        • • 

d RF          /      Ri 

\   RF          j Air 

i 
A 

d 
Water 

T o                     o 

Initial Charge Locations 

O 

Fig. 1 — Empirical model for shock effects 

NUMERICAL RESULTS AND VALIDATIONS 

In this chapter, validations of the 2-D computational model are first presented. Comparisons of 
the computations to experimental data include plume height measurements from video cameras 
images and plume density measurements from both conductivity probes and microwave absorption. 
The computational model is then used to determine an "optimal depth study" in which a measure of 
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the plume density as a function of charge depth is maximized. Finally, the empirical shock model 
displayed in Fig. 1 is validated using the BUB3D code. 

The tests described here were conducted in a 130-foot-deep water-filled quarry operated by 
Dynamic Testing, Incorporated (DTI) in Rustburg, Virginia, during July 1995. The charges used in 
the experiments were configured in a line comprised of five to eight discrete 10-lb blocks of C-4 
separated by 8 ft or as a continuous line charge of length 40 ft to 56 ft. A more detailed description 
of these tests has appeared in Ref. 18. The subset of tests considered here are summarized in Table 1. 
In this table, JV is the number of discrete charges in the configurations, S is the distance between the 
center of the charges, A^ is the maximum theoretical radius of the cylindrical bubble as determined 

using Eq. (28), and C is the scaled depth, C = d/A(™). The parentheses surrounding the number of 
charges of the continuous type indicate that these were actually comprised of individual 1-lb blocks 

of C-4 in a line. 

Table 1 — Test Shot Descriptions 

Shot Type dm N S(ft) M A2D) 
max 

C 

No. (lb/ft) (ft) 

2 Discrete 8.2 5 8 1.25 11.53 0.71 
6 Discrete 8.2 8 8 1.25 11.53 0.71 
7 Continuous 8.2 (56) (1) 1.25 11.53 0.71 

9 Discrete 8.2 5 8 1.25 11.53 0.71 
10 Discrete 9.4 5 8 1.25 11.36 0.83 

11 Continuous 9.4 (40) (I) 1.25 11.36 0.83 

Validations of the Two-Dimensional Model 

The two-dimensional (2-D) model uses an initial approximation of the bubble as a circular 
cylinder of infinite extent. This approximation is reasonable for the discrete tests only if the 
distance between charges is relatively small when compared to the maximum diameter of the 
spherical bubble from an individual charge. For the discrete tests listed in Table 1, the individual 10- 
pound charges of C-4 would generate bubbles with maximum radii Amax = 9.3, when </ = 8.2, and 

A    =9.2 at  d = 9A. Since these values are greater than the charge standoff of 8 ft,  it can be 
max * . 

expected that the bubble dynamics will be adequately represented by the 2-D approximation. 
However, it can be expected that shot numbers 7 and 11 will be better represented by this 
approximation. 

The grids used in this study are tensor product grids. That is, the grid point locations may be 
defined as a tensor product of two one-dimensional (1-D) grids. Typically, the grids are constructed 
with uniform spacing in both directions in the vicinity of the bubble, with grid stretching to 
approximate either conditions at infinity or a wall boundary relatively far away. The x-direction is 
taken to be the horizontal line perpendicular to the line charge (cylindrical axis). For single line 
charges, x = 0 is a symmetry plane. The z coordinate measures vertical displacement with the 
convention that z = 0 corresponds to the initial location of the water-air interface. 

Cylindrical explosion bubbles are more difficult to resolve numerically than axially symmetric 
bubbles due to the greater values of the radius ratio a(2D). For the test shots in Table 1, the initial 
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(minimum) bubble radius (determined using Eq. (24)) is A^ = 0.197 so that a(2D) > 57. Thus, the use 
of a single uniform grid capable of resolving the initial bubble and extending beyond the bubble at its 
maximum size would contain a prohibitively large number of cells. One method of alleviating this 
problem is through the use of two separate grids. 

The 2-D solutions were computed in two steps. Initially, a grid that was fine in a region 
surrounding the charge line was used until the bubble approached the boundary of the fine region. 
Then the solution was remapped, conserving mass and momentum onto a grid that was coarser than 
the fine grid region of the first grid but still able to resolve the bubble after the initial grid had been 
used. This second grid was uniform in a large enough region to contain the important long-time 
dynamics of the problem. For example, the initial grid used in these computations consisted of 
40 x 100 square cells of size \ =0.05 in the region 0<x<2 intersected with -d-2.5<z<-d+2.5. 
Outside of the uniform region, cells were stretched horizontally to x = Xr = 110 and downward to 
z = Zb = -115 using 40 additional grid lines in each direction. Above the uniform region, the spacing 
in the z direction was uniformly set to Az = 0.1 in the region -d + 2.5<z<2. The initial grid was 
used for 0<t<tt =0.007, while the cylindrical bubble grew from its initial radius of 0.197 to 
approximately 1.6. The computed solution at t = tt was then remapped onto the second grid. 

The numerical errors were approximated by using two different grids for the second step of the 
computations. Each grid contained square cells of size f^ in the region 0<x<12 intersected with 
-J-ll<z<28. As with the initial grid domain, the second grids were stretched horizontally to 
x = Xr = 110 and downward to z = Zb =-115. To simulate the tests where the initial charge was at 
depth d = 8.2, the grids were stretched upward to z = Zt = 180 and, in the case when d = 9A, they 
were stretched to z = Zt= 125. The "fine" grids contained a uniform region with hj = 0.2 and used a 
total of 100 x 305 cells, and the "coarse" grids contained a uniform region with hj = 0.4 and used a 
total of 50 x 160 cells. 

The effect of using an indented channel in the surface above the line of charges was also tested. 
This was done by performing the computations using both an initially "flat" and "indented" free 
surface. The indentations are determined using the model shown in Fig. 1 with Rj = 1.03d, which is 
the same value used in Ref. 2 for axially symmetric computations with a single charge. 

A summary of the runs with computed bubble periods, Th (the computed time that the bubble 
attains its minimum radius) and maximum radii, A)^h, is listed in Table 2. Here, the radius refers to 
the equivalent radius of a cylinder with the same cross-sectional area since the bubbles will in general 
not remain circular. The number of time steps taken to the first bubble minimum, N(Th), and the 
total number of steps, N(TF), to reach the final time TF =6.0, are also listed. The time steps for the 
runs were adaptively selected, based on changes in equivalent radius. The number of steps taken until 
the first bubble minimum is determined by an input tolerance, which was halved for the fine grid runs. 
The execution times in Table 2 are in minutes on a Silicon Graphics Impact 2 workstation with an 
R10000 processor, compiled using f77 -03 -mips4 -n32 -r 10000. The times listed are for the 
completion of the second step of the run only. The execution time for the initial grid was 
approximately 15 min. 
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Table 2 — Run Summary 

Run d Surface Second Grid A2D) 
Amaxh Th 

N(Th) N(TF) Execution 
time 

7-C 8.2 flat coarse 10.824 0.5921 466 1912 28.1 
7-CI 8.2 indented coarse 10.761 0.5898 448 1978 29.5 

7-F 8.2 flat fine 10.903 0.5862 860 3574 409.1 

7-FI 8.2 indented fine 10.820 0.5859 874 3605 407.1 

11-C 9.4 flat coarse 10.787 0.6087 463 1927 28.4 
11-CI 9.4 indented coarse 10.753 0.6069 465 1955 28.7 

11-F 9.4 flat fine 10.880 0.6034 876 3826 402.4 

11-FI 9.4 indented fine 10.840 0.6019 884 3761 415.8 

The values of A{™\ listed in Table 2 indicate that the depth has little influence on the maximum 

radius. However, the fine grid values are approximately 1% greater than the coarse grid values. Since 
the grid sizes and time steps were approximately halved in the fine grid and first order convergence 
has been observed for the maximum radius (and period) using this numerical method, the difference in 
the two solutions provides an estimate of the numerical error. The computed periods at the shallower 
depth are consistently shorter than at the greater depth. This is consistent with the theoretical and 
experimental observations reported in Ref. 2 due to the proximity of the free surface. As with the 
maximum radius values, the periods computed using the fine grids are approximately 1% greater than 
on the corresponding coarse grid 

Plume Observations 

Density contours of the plumes at t = 0.2, 0.5, 1.0, and 2.5 for the computational Runs 7-C, 7-F, 
7-CI, and 7-FI are displayed in Fig. 2. These images are based on a shading corresponding to the 
logarithm of the density. This enables the relatively low density of the spray in the plume to be 
easily observed. Densities less than 0.1% of the water density are represented as a "white" region, and 
"black" corresponds to the water density. 

At time t = 0.2, the "egg-shaped" bubble has nearly attained its maximum radius. The bubble 
profiles for the four cases at this time are nearly indistinguishable, except for the slightly irregular 
profile of the bubble in Run 7-C. A small region of "numerical spray" has begun to form above the 
water on top of the bubble. This corresponds to the "Rayleigh-Taylor" instability at the water-air 
surface, where the water has an upward velocity but is being accelerated downward due to the below 
ambient pressure inside the bubble. Further discussions of instabilities due to explosion bubble 
dynamics are included in Refs. 4 and 9. A small thin upward moving water jet has formed in the cases 
when the initial surface was indented. This phenomenon has been described in Ref. 17 and examined 
further in Ref. 2. 

At time t = 0.5, the bubble has begun to collapse. During this collapse a high-pressure stagnation 
point forms in the water above the bubble. This in turn causes the formation of a "double jet"; a 
small one moving downward through the bubble, and a larger one forming the central water column of 
the plume. Similar jetting behavior has been observed for axially symmetric bubbles by Blake and 
Gibson in Ref. 19. In the computations, this central column is surrounded by the numerical spray 
region, which is moving upward but is being accelerated downward by gravity. The thin jet caused by 
the indentation rises approximately 10 ft above the numerical spray. Once again, there is little 
difference between the bubble and plume profiles for the coarse and fine grid run comparisons. 
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Fig. 2 — Computational runs for Shot 7 

As indicated in Table 2, the bubble period for all four runs was approximately 0.59 s. As the 
bubble re-expands, secondary plumes are ejected upward and outward on the sides of the central 
plume. At time f = 1.0, the bubble has begun its second contraction, and the secondary plumes have 
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reached a height of over 25 ft, and a total width of over 40 ft. At this time, differences in the details 
inside the plume structure become more evident at the different grid resolutions. On the fine grid 
runs, the plume structures are almost identical, except for the thin central plume, which remains 
higher in the indented surface case. The top of the secondary plume from Run 7-C is slightly wider 
and lower than with Run 7-CI. Differences in the solutions as time progresses are expected due to the 
water-air instabilities mentioned above and the instabilities at the bubble interface near bubble 
minimums. However, the overall qualitative behavior of the plume and bubble appears to be 
reproducible. 

Plume differences are more apparent at t = 2.5. At this time, the plumes have begun falling 
downward with gravity, and the bubble has little remaining energy. Bubble energy is reduced in our 
computational model through both numerical dissipation and through our redistribution step and 
treatment of liquid-on-liquid collisions. For further discussions on energy losses, see Refs. 4, 6, 7, 
and 9. The widths and heights of the secondary plumes for the coarse grid runs have continued to 
diverge. In the indented runs, the plume structure is similar between the two grids, with the coarse grid 
secondary plume extending higher (probably due to the use of the stretched grid cells). Some detail in 
the plume structure at a height of about 30 ft appears in the fine grid Run 7-FI due to one of the 
bubble pulsations. During the computations, the bubble typically underwent ten pulsations before 
venting at about t = 4.5. This plume detail can also be seen at a height of about 20 ft in Run 7-F and 
just above the surface for the coarse grid runs. Comparing the four runs demonstrates that the major 
difference between using the flat or indented surface is the height of the thin central plume, and even 
though some detail is lost with the coarse grids, their solutions agree qualitatively with the finer grid 
runs, particularly at the early times. 

Figure 3 displays graphs of the computed plume heights as a function of time for DTI Shot 7. 
Here, the plume height was defined as the highest location of a grid cell having a density greater than 
1% of the water density. When the free surface has an initial indentation the primary central plume 
always remains higher than the secondary plumes, as indicated by the smooth nearly parabolic 
profiles from Runs 7-CI and 7-FI. In this case the difference between the fine and coarse grids is 
relatively small. For the first second the relative error is less than 3%. The error increases to about 
6% at t = 2 s, and the error in the maximum computed plume height is under 8%. The inflection 
point in the plume height for Run 7-F shortly after t= 1.1 was caused by the secondary plume rising 
above the central plume. In Fig. 2 the details of this secondary plume, and of subsequently ejected 
plumes are not reproduced on the coarse grid Run 7-C. The discontinuity in the plume height at 
t = 3>.5 s for Run 7-F occurs as the density of the falling plume decreases below 1% of the water 
density. This happens because the plume has a horizontal velocity and becomes under-resolved 
(diffused) as it passes through the stretched cells in the grid. 

Figure 4 displays the computed plume heights for Shot 11. The plume heights are roughly 25% 
lower than the computed results for Shot 7. As before the agreement between the coarse and fine grid 
results with the initially indented free surface (Runs 11-CI and 11-FI) is very good, except for t > 3, 
when part of the coarse grid secondary plume extends above the primary plume. 

Measurements of the plume heights using video frames were documented in Ref. 18. The 
measured heights for Shot 7 are compared to the results from the fine grid computations in Fig. 5. 
After t= 1.2 s, plume height measurements were not possible due to a combination of the poor 
definition of the top of the plume and low contrast. While the computations using a flat initial 
surface under predict the measurements by over 30%, the use of the initial indentation produces 
relative errors under 10%. At early times the higher values for the measured heights are conjectured 
to be caused by the initial shock spalling water from the surface. Recall, we are not modeling the 
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shock directly, but only empirically using the indentation above the surface. At later times, the 
computed heights for Run 11-FI overtake the measurements. This is very likely due to drag on the 
top of the plume in the air; another phenomenon that is not included in our model. 

Fig. 3 — Computed plume heights for Shot 7 

Fig. 4 — Computed plume heights for Shot 11 

The results for the deeper case, Shot 11, are shown in Fig. 6. As before, the computation with 
the flat initial surface, Run 11-F, under predicts the measured values at all times, while Run 11-FI 
predicts heights below the measurements at early times and exceeding the measurements at later 
times. 

We remark that the measured values used in Fig. 6 were not taken from Ref. 18. While our 
estimates from the video data agreed with their results for all other shot cases, our estimates for 
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Shot 11 were 25 to 30% higher. Since the digital images used in that report were not saved and hard 
copies of the video sequences were not printed, it was not possible to reproduce the measurements 
presented in Ref. 18. However, we attempt to justify our measurements by comparing pictures from 
the video sequence and computations for each shot. 

0 0.2 0.4 0.6 0.8 
Time (s) 

Fig. 5 — Computed and measured plume heights for Shot 7 
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1.2 

Fig. 6 — Computed and measured plume heights for Shot 11 

Figure 7 shows a sequence of side-by-side comparisons of video frames from the experiment and 
computed density contours from Run 7-FI of the plume evolution for Shot 7. At early times, t< 0.8, 
the computations under predict the observed plume heights. This may be due to the water spalled 
upward due to the initial shock reflection. The outline of the numerical spray region appears to 
provide a rough approximation to the outline of the actual plume. The emergence of the secondary 
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plumes through the spray outline coincides at t = 0.8 in both the computation and the experiment. 
At later times, the secondary plume has a greater horizontal velocity and lower vertical velocity in 
the experiment than the computation indicates. Still, the overall qualitative agreement between the 
computation and experiment is remarkable, considering the complexity and duration of the 
phenomenon. The total duration of the plume above the water surface is slightly under predicted by 
the computations as indicated at 7 = 5.0. This can be expected due to the drag on the fine water 
droplets comprising the spray in the plume at the late times. 

Figure 8 shows a sequence of side-by-side comparisons of the plume evolution for Shot 11. In this 
case the early time plume profiles are in better agreement for t < 0.8 than with Shot 7. Here, the 
numerical spray region more closely matches the opaque spray surrounding the plume. The secondary 
plume, which can be seen in the numerical spray region at t = 0.8, has not yet emerged from the 
spray outline, as it appears in the video frame. Also, as with Shot 7, the computed secondary plume 
rises higher than in the experiment. Since this secondary plume appears to be comprised primarily of 
spray, drag may be effecting its motion substantially. The overall duration of the plume above the 
surface is reproduced well by the computation, as indicated at t = A.A. 

Note the difference in scale of the video frames from the two shots as shown in Fig. 7 and Fig. 8. 
The grid marks in each case were based on matching measured plume heights at corresponding times 
from video frames taken at a 90° angle to the line charge. These latter frames had fiducials so that 
precise scale measurements could be made (see Ref. 18). As an additional check of the scale used in 
Figs. 7 and 8 observe the profile of the trees in the background. The field of view (FOV) for Shot 11 
(Fig. 8) is obviously narrower than for Shot 7 (see Fig. 7). The grid scales used in these figures closely 
match the difference in the FOV. When this difference in the FOV is taken into account, the plume 
heights for Shot 11 agree with those presented in Fig. 6 but, as previously mentioned, are 25 to 30% 
higher than reported in Ref. 18. 

Microwave Data 

Measurements of the plume density using microwave measurements were first discussed in 
Ref. 20. These measurements were based on the amount of microwave absorption through the plume. 
Microwaves were sent and received using a pair of 3-ft radius parabolic dishes placed on either side of 
the plume at equal heights above the water surface. To compare the microwave measurement with 
the computed densities, the computed values were integrated within a cylindrical region of radius 3 ft, 
corresponding to the region between the parabolic dishes. At time t", this integral, representing the 
total amount of water between the dishes, can be expressed as 

I(tn,H,R,L) = I"(H,R,L) = j^dz^ayj^p-ix^dx (29) 

where R = 3 is the radius of the dishes, H is the height of the center of the dishes, 2L is the distance 
between the dishes, and 

r(z) = yR'-^-Hy    *k-"l**. (30) 
I 0 otherwise 
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Fig. 7 — Video frames and computations for Shot 7 
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In both the experiment and the computations the value for L was sufficiently large to contain the 
entire width of the plume. For 2-D approximations, p" does not change in the y direction (parallel 
to the line of charges and perpendicular to the line between the microwave dishes). Therefore, using 
symmetry across x = 0, it follows that 

H+R       L 

I"(H,R,L) = 4 jr(z)jpn(x,y,z)dxdz. (31) 
H-R        0 

This integral is approximated numerically using the quadrature formula 

I"(H,R,L)~i; =4£K2y)i>"y(Ax)/(AZ),, (32) 

where 

Z,    +Z; 5. = tl L, (M), = z] - z), (Ax),. = xM - x,., 
J 2 J 

z] = min(H + R, zj+l), z) = max(# - R, z,), 

Jx = max{y :zj<H- R],        J2 = minjy :Zj.>H + R}. 

This mass is converted into an equivalent water length (EWL) by 

W(t",H,R,L) ^ W"(H,R,L) = r^R^, (33) 
P0TTR 

corresponding to the length of water filling the cylinder having an equivalent mass as the plume 
intersected with the cylinder. The cylinder is horizontal with its axis at height H, with radius R, and 
length 2L. (For the microwave data the length of the cylinder or distance between the dishes is not 
significant since this distance is much greater than the width of the plume. That is, W will not change 
if L is sufficiently large.) 

Figure 9 shows the computed and measured microwave data for Shot 7. The measured values for 
this shot became saturated at a peak value of 1.56 as indicated by the flat plateau in its graph. The 
graph of the measured data begins rising approximately 0.15 s earlier than the computed results that 
corresponds to the plume height data presented in Fig. 5. Since the plume heights from the runs with 
the indented surface were in better agreement with the measurements, only data from those runs are 
presented here. At early times (f<0.8), only the central plume passes through the microwave 
cylinder. Both computations appear to severely under predict the amount of water in the central 
plume at this height. Consider the structure of the computed plume at t = 0.5 in Fig. 2. The density 
contours indicate a thick wall of water rising to a height of about 20 ft. Above this thick region is a 
much thinner plume resulting from the initial indentation. According to the computations, the thick 
part of the plume begins to thin out before it reaches a height of 25 ft. Therefore, reducing H 
generally increases W. For example, Run 7-FI yielded ^(0.5,12.5,3.0^) = 3.3, compared to 
fT(0.5,25,3.0,Z,)<0.5, as indicated in Fig. 9. The peak in the computed values at approximately 
f = 1.0 occur'as the secondary plumes pass through the microwave height. This peak is followed by a 
smaller peak as the water at the top of the secondary plume falls back downward. Since the secondary 
plume was not ejected upward as high in the coarse grid run, the smaller peak appears substantially 
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earlier 0 = 1.3) for Run 7-CI than the time 0 = 2.1) it appears for Run 7-FI. At later times (t> 3), 
the fine grid run and the measured data are in better agreement. 

Fig. 9 — Computed and measured microwave data for Shot 7 

Figure 10 displays the microwave results for Shot 11. Here the initial rise in the graphs for t< 0.5 
are all in agreement. However, while the measured data rises and then falls (consistent with the peak 
computed plume heights shown in Fig. 4), the computed data for Run 11-FI peaks at t= 1.0 as the 
secondary plume rises above 25 ft (cf., Fig. 8). While the computed equivalent water length values 
range between 1.1 and 1.7 for 1 <t<2.\, the measured data range between 2.0 and 3.2 during the 
same time period. 
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Fig. 10 — Computed and measured microwave data for Shot 11 

Probe Data 

In addition to the microwave data, plume densities were measured using conductivity probes. 
These probes were developed by Phillips and Scott [21] and consist of two parallel stainless steel rods 
whose conductivity is linearly proportional to its unwetted length. For these tests, fifteen probes 
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were suspended on a cable perpendicular to the line of charges at a nominal height of 12.5 ft. The use 
this technology for plume density measurements was conceived of and previously used by Lipton in 
Ref. 22. However, the measured height above the charges was only 11.5 ft as described in Ref. 23. 
The probes were spaced 1 foot apart with a central probe directly above the line of charges. 

Making comparisons of density measurements at the individual locations is not meaningful due to 
the instabilities inherent in the plume formation. Indeed, there is very little agreement between probe 
pairs equally distant on either side of the charges. However, some success was achieved by making 
comparisons using an integral norm. As with the microwave comparisons, we define the effective 
water length fusing (29) and (33), taking the limit as R -> 0. This yields 

1 
W(t,H,0,L) = — jp(t,x,yp,H)dx, 

Po -L 

(34) 

where H is the height of the probe line, yp the horizontal offset from the central charge (or center of 
the line charge), and 2L is the distance between the first and last probe in the line. Since the probes 
are located at discrete points, this quantity is approximated using the trapezoid rule quadrature 

Ws=- 
JV-l 

P,/2+XP,+PJV/2 (35) 

where S is the uniform spacing between the JV probes and Pi is the density at the ith probe location. 
The use of (36) with S = 1 and N = 15, corresponding to the actual probe locations, is referred to as 
"point line integration" (PLI). Later, we will also consider an approximation to Eq. (34) based on 
values for the densities inside each computational cell, with values for L greater than the plume 
widths. This will be referred to as "full line integration" (FLI). 

The computational data was integrated at H = 12.5, as opposed to the 11.5 ft height of the cable. 
However, the cable was moved by the plume during the experiment so precisely that matching the 
height of the probe cable was not feasible. Figure 11 shows a comparison of the equivalent water 
lengths Ws, using Eq. (35) on the probe data and the computational data. While the peak values of Ws 

agree to within 15%, the peak of the computed values occurs at approximately t = 0.5 s, while the 
measured peak occurs at approximately t = 1.2 s. Compared to the microwave data, both the 
computed and measured probe data indicate much lower lvalues for t > 2. This is because after this 
time most of the plume has spread out beyond the 15 ft width straddled by the probes. Furthermore, 
the probes open downward and are not able to detect water falling downward due to a "shadowing" 

effect. 

Figure 12 displays the comparison for Shot 11. Here, the computations are substantially higher 
than the measurements at almost all times. As the water in the plume is broken up into droplets and 
spray, the behavior of the probes is not well-known. In general droplets smaller than the width of the 
fork in the probes will not be detected. This may partially explain the large discrepancy in the data. 

The integrity of all the data can be checked by comparing results from each measurement for 
one of the shots. Fig. 13 shows a comparison of the data for Shot 7 for t< 1. For f <0.8, the plume 
is comprised of only the central water column, surrounded by spray from the initial shock reflection 
and Rayleigh-Taylor instability at the free surface. Therefore, it can be expected that the density 
probes span most of the water in the plume at these times. However, as seen in Fig. 13, the 
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integrated measured probe data is not only far below the computed data (Run 7-FI (PLI) and (FLI)), 
but it is also well below the measured microwave data recorded at over twice the height of the probe 
line. That the probes are spaced sufficiently close to resolve the plume structure and their 14-ft span 
is sufficiently wide during these times is supported by the similarity of the computational data using 
either point line integration at only the probe locations (PLI) or full line (FLI) integration at all cell 
locations. These two integration formulas begin to diverge after t = 0.8 as the wider secondary plume 
reaches the probe height. Another disturbing feature in Fig. 13 is that the microwave data, measured 
at 25 ft begins to rise at about the same time as the probe data, measured at 11.5 ft. These 
discrepancies suggest that inaccuracies in the measurements may be as significant as with the 
computations. 
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Fig. 11 — Computed and measured probe data for Shot 7 
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Fig. 12 — Computed and measured probe data for Shot 11 
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Fig. 13 — Early time density computations and measurements for Shot 7 

Optimal Depth Study 

Despite the relatively poor agreement between the computations, microwave data, and probe 
data, an optimality study, based on the computations, is presented. The validity of this study is based 
on the agreement in the measured plume heights and the qualitative agreement between the video 
frames and the computed density contours. The use of microwave and probe measurements has not 
been validated for plume density measurements independently. Therefore, even though the 
computations may (or may not) disagree with the actual plume water content at any individual 
charge depth, the dependence of the plume density on the charge depth may still be accurately 
predicted. 

The computations were performed with initial charge depths between 1 and 21 ft. In particular 
runs were made at depths, d=\, 1.5,...,4.5, 5.0, 5.2,...,9.8, 10.0, 11.0,...,15.0, 17.0, 19.0, and 21.0. 
The initial conditions used were the same as those based on the empirical laws described previously, 
modeling a line charge of M= 1.25 lbs/ft of C-4. Distances (including charge depths) may be 
nondimensionalized using the free-field maximum bubble radius. However, the effects of gravity do 
not scale, so the "nondimensionalized" results presented here can only be expected to be valid for 
charges producing bubble energies within an order of magnitude of these C-4 charges. Initially, the 
computations used an indented free surface with the radius of the indentation given by i?/= 1.03d, 

whenever the scaled depth is less than one, that is, C = -—^ < 1. As with the computations for Shot 

7 and Shot 11, the runs were started on a grid that had a uniform fine grid region of cells with size 
/z, = 0.05, surrounding the initial charge location. In all cases, the uniform region in the horizontal 
direction was restricted to the vertical strip, 0<x<2. The uniform region in the vertical direction 
depended on the initial charge depth, as indicated in Table 3. In the cases when the top of the 
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uniform region was below z = 1, cells of height 2\ were added to extend the computational domain 
to z = l. As before, these initial grids were used for 0<t<tt =0.007, after which the solution was 
remapped onto the second grid. The uniform grid region for the second grid had cell size /^ = 0.4, 
corresponding to the "coarse" grid used previously. The uniform grid region used for the second grid 
was the vertical strip 0 < JC < 12 intersected with the horizontal strip indicated in Table 3. 

Table 3 — Uniform Grid Regions for Depth Dependence Runs 

Depth Range Initial Grid Second Grid 

d<5 -7<z<l -21<z<29 
5<d<10 -12<z<-3 -21<z<29 
U<d<\5 -17<z<-9 -25<z<29 

d>l5 -d-2<z<-d+2 -J-12<z<29 

In this study the expression "optimal" will refer to some functional F of the equivalent water 
length W as a function of the depth, d. Ideally, we seek dopt, which satisfies 

F(W(t,H,R,L,dopt))=maxFQV(t,H,R,L,d)). (36) 

Two specific forms for F will be used. The first is simply the time integral of W, namely, 

f1(dJ) = Fl(W(t,HD,RD,°°,d),T) = foW(t,HD,RD,~,d)dt, (37) 

which has units of mass-time. The second functional measures the length of time that Wis greater 
than or equal to some threshold. More precisely, 

f2(d,EwJ)^F2(W(t,HD,RD,oO,d),EwJ) = m({t:W(tMD,RD,^,d)>Ew}n{0<t<T}),    (38) 

where m refers to the Lebesgue measure (length) of the set. The threshold value Ew may relate to 
some predetermined value for which the plume makes an effective barrier. 

Three choices for the pair (H, R) are (12.5, 0.5), (16.5, 5.5), and (25.0, 0.5). These will be 
referred to as low, average, and high, respectively. The "low" and "high" choices correspond to what 
would be encountered by a one-foot diameter missile at heights of 12.5 and 25 ft, respectively. The 
"average" represents a weighted average between heights 11 and 22 ft. This roughly corresponds to 
the scaled heights between 1 and 2 Amax. 

A graph of the function fj(d,T) for the three choices of (H, R), is shown in Fig. 14 below, with 
r=6.0 (the entire plume duration). Due to the oscillations in the computed data, an approximation 
of dopt cannot be confidently determined. However, some of the features of these graphs become 
clearer after the data has been smoothed. The smoothing of the data was performed using 
8s = ^10(g)> where A(g)t =(gM + 4g,. + gM)/6 and g is the vector of values of fi(d,T) interpolated (if 
necessary) to the uniform grid di =1 + 0.2/ for / = 0,...,100. The values at the endpoints / = 0 and 
i= 100 are held fixed by the smoothing. 
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Fig. 14 — Smoothed and raw computed values for fi{d,T) 

A phenomenological argument explaining all of the relative extrema shown in the data cannot be 
made at this time. However, the three clear relative maxima, appearing in the "average" case, can be 
partially explained by a careful examination of the computed results. At shallow depths, C < 0.5 
(d < 6), the bubble can be expected to vent before its first period (time of minimum volume). For 
very shallow depths (d < 2.0), the venting occurs early and the amount of water ejected upward is 
almost exactly proportional to amount initially above the bubble (charge). As the depth increases, 
the time of venting also increases. Eventually, venting will not occur until after the bubble attains a 
pressure below the ambient pressure. During this time, the water above the bubble is accelerated 
downward, thereby decreasing the amount ejected upwards. This explains the first relative maximum 
at d = 2.5 (C = 0.21). When venting is delayed until after the first bubble maximum volume, the 
velocities of the surrounding water point toward the bubble's center causing it to contract. A high 
pressure region forms above the bubble due to the water rushing inward in the relatively thin layer 
between the bubble and the air. This causes the formation of the central plume ((cf., Figs. 7 and 8) 
t = 0A and 0.5). Due to the relatively thin layer of water above the bubble at this time and Rayleigh- 
Taylor instability, some "fingering" of the free surface can pierce the bubble causing some venting to 
occur. The amount of water in the plume depends on how late venting occurs. At depths d > 6.0 
(C > 0.5), the bubble no longer vents during its first pulse. As the depth increases, the central plume 
thickens but attains lower maximum heights. The second relative maxima in /, for the "average" 
choice occurs at approximately J=7.6, (C = 0.66). Adding to the total water ejected are the 
secondary plumes that appear during the bubble's second expansion (cf, Figs. 7 and 8, t = 0.8). While 
the total amount of water in the central plume appears to diminish after d> 8.0, the amounts ejected 
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by the secondary and tertiary pulses increase, and the global maximum appears at d= 14.0, (C = 1.3) 
for the "average" choice. At the "low" height, the global maximum occurs at d= 15 and, at the 
"high" height, it occurs at the shallower depth of d= 13. This can be explained by tertiary plumes 
contributing more water and rising to maximum heights between 12.5 and 22 ft. 

The theory described above is also supported by the graph of the smoothed second functional f2 

defined by Eq. (38). Figures 15 and 16 display graphs of /2(d,1.5,6.0)and f2(d, 1.5,2.0), respectively. 
The similarity in these two sets of graphs for d< 10 demonstrates that for these depths most of the 
water appears in the plumes for the first 2 s after the detonation. However, for d> 12, a substantial 
amount of water is ejected upward after 2 s. This corresponds to times after several bubble pulses 
have occurred. The relative maximum at d= 18.8 at the "low" height for f2(d, 1.5,6.0) is almost 
twice its corresponding value for f2(d, 1.5,2.0). This indicates that, for depths near d=l9, a plume 
rising just above 12.5 ft is ejected upward shortly before t = 2 and contains a substantial amount of 
water. 

10 15 
Depth (ft) 

20 25 

Fig. 15 — Smoothed computed values forf2{d,\.5,6.0) 
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Fig. 16 — Smoothed computed values for/?(rf,l.5,2.0) 
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Validations of the Three-Dimensional Model 

The BUB3D code was used to model the effects of using discrete charges as opposed to the 
continuous line charge approximated with the 2-D model. The goal of this computational 
experiment was to predict the difference in the plume structure observed between the use of discrete 
or continuous line charges. This difference is conjectured to be caused from shock interactions at the 
free surface between the discrete charges shortly after a (nearly) simultaneous detonation. The 
incompressible liquid model was initialized using the empirical shock model depicted in Fig. 1. In 

particular, the choices Rj = 1.03d and RF = U^d2 + (S/2f were used to initialize the density. 

The assumption that the line charge is of infinite extent was retained from the 2-D model, so 
that only one variable (initial charge shape) was changed. This approximation was implemented, 
using an extra symmetry plane, centered between two discrete charges. A second symmetry plane, 
parallel to the first and cutting through the center of the initial charge location, was also used. 
Finally, the model includes a third symmetry plane, containing the line of charges. This third plane 
corresponds to the symmetry plane used in the two dimensional computations. If an initial charge is 
located at coordinates (x,y, z) = (0, 0, -d) and the initial standoff distance between the charges is S, 
then the three symmetry planes described above are located aty = S/2, y = 0, and x = 0, respectively. 

Using the conditions for Shots 2, 6, and 9, namely, d= 8.2, W = 10 lbs of Composition C-4, it 
follows from Eqs. (18-23) that A^n =0.61617, AWK = 93, and p\ = 1535.7P„. (Note, this is the same 
initial pressure as for the 2-D model for Shot 7.) As with the 2-D model, a two-grid solution 
procedure was used. The initial grid contained a fine uniform region of cell "cubes" of size \ = 0.1 in 
the region 0 < x <2, intersected with 0 < y < 4 and -10.2 < z < -6.2. Above this region the cells were 
stretched vertically to a maximum size of hz =0.2, using 46 cells, extending the domain to z = 2.0. 
The grid was stretched downward to z = -50, using an additional 12 cells. In the x-direction, cells were 
stretched to JC = 50, using an additional 10 cells. Overall, the initial grid was comprised of 
30 x 40 x 98 cells. 

The second grid had a resolution corresponding to the "coarse" grids used in the 2-D study. The 
uniform region was composed of cubic cells of size Ä, = 0.4 in the region 0<x < 12 intersected with 
0 < v < 4 and -20 < z < 30. Additional stretched cells extended the domain down to z = -100, up to 
z = 150, and across to x = 100. The second grid used a total of 50 x 10 x 185 cells. 

Figure 17 shows a composite of video images from Shot 6 and the 3-D computations. The view 
displayed in these images is the "front" view, perpendicular to the line of charges and the images 
shown in Figs. 7 and 8. Density plots from the computations overlay the video images in the range 
0< v<28. These plots were created by reflecting and copying plots from the actual computational 
region (0<v<4)by symmetry. 

The video image at time t = 0 corresponds to a time shortly after the charge detonations. The 
density plot overlaying this image corresponds to the computation at ? = 0.0035, the initial time for 
the remapped solution on the second grid. At this time the bubbles are still discrete and nearly 
spherical. The indentations at z = 0 for the empirical model of the shock interactions can be 
observed. The shock interactions may be clearly observed as white "bumps" above the line of charges 
at the midpoints between the charges. Curved white lines emanating from these points on either side 
of the charge line are also observable in this image. The curve in these lines is due to slightly 
asynchronous detonation (from right to  left) of the charges. At f = 0.1,  seven distinct "finger 
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plumes" can be seen rising to a height of about 20 ft, compared to 15 ft in the computations. The 
computed shorter plumes directly above the initial charge locations arise from the initial indentation 
of radius Rt. In the video it is difficult to see this detail in the plume structure. The computed bubble is 
now cylindrical shaped separated by a thin membrane at the symmetry wall. The bubble expands 
attaining a maximum volume at t = 0.266, and the contraction can be clearly observed at t = 0.4. The 
bubble continues its collapse until shortly after ? = 0.5. The height of the plume fingers is under 
predicted by the computations for t<03 and slightly over predicted for t>03. At the later times, 
the plume velocity can be expected to be influenced by air resistance. Air resistance is not modeled in 
the computations. This is a likely cause of the over production of the plume heights for t > 0.3. 
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Fig. 17 — Composite of video images and computed density plots for Shot 6 

A comparison of the measured and computed plume heights is shown in Fig. 18. Also included 
were measured plume heights from Shots 2 and 9 (same depth and standoff as Shot 6 but using only 5 
charges). The plume heights from Shots 2 and 9 are slightly lower than for Shot 6, and they are in 
better agreement with the computation for t < 0.3 and in worse agreement for t > 0.3. 

Figure 19 displays perspective images of the 3-D computation. In these frames, two isocontours 
of density are displayed. For the plume above z = 0, the isosurface p = 0.001p0 is rendered in light 
gray, while for the bubble below z = 0 the isosurface p = 0.5p0 is rendered in dark gray. At t = 0.2, the 
bubble is clearly seen to be cylindrical in shape. A 2-D jet can be seen piercing the top of the 
cylindrical bubble at the start of the collapse phase at t = 0.4. The ejection of the secondary plumes 
can be seen at times f = 1.0 and t= 1.2. These secondary plumes appear later in this calculation than 
in the analogous 2-D computation (cf, Fig. 7) due to the bubble venting into the air region during its 
collapse. When the bubble reformed it continued to collapse but had less energy for the second 
expansion. 



30 Szymczak and Higdon 

80 

70 

60 

50 

-Shot 6 
-Shot 2 
-Shot 9 
-Computed 

0.0 0.1 0.2 0.3 0.4 0.5 
Time (s) 

Fig. 18 — Computed and measured plume heights for discrete charge shots 
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SUMMARY AND CONCLUSIONS 

This report presented comparisons between computational and experimental measurements of 
plumes produced by underwater explosions. Of particular interest was the study of charge 
configurations, which create a plume "barrier" by ejecting a "wall of water" above the surface. Such 
an effect occurs after either the nearly simultaneous detonation of discrete charges placed sufficiently 
close together in a line, or the detonation of a continuous line of charges. 

The overall hydrodynamic phenomena involved in this process is extremely complicated. The 
bubble formed from underwater detonation can undergo several cycles or periods before it vents. 
During each cycle, hydrodynamic instabilities can be expected at both the bubble-water and air-water 
interfaces. Rayleigh-Taylor instabilities occur whenever a denser material (water) is accelerated into a 
less dense material (bubble gas, or air). These instabilities occur at the bubble interface when the 
bubble is near its minimum volume and the bubble pressure is above the ambient hydrostatic pressure. 
They also occur at the air-water interface as the bubble begins its contraction. Such instabilities make 
pointwise density comparisons meaningless. Combined with the long-time behavior of the overall 
dynamics, the numerical accuracy of the computations is also an issue. Nevertheless, the overall 
dynamics of the plume formation and secondary plume ejection is reproducible experimentally, and 
as was demonstrated in this paper, computationally as well. 

Numerical accuracy of the computations was studied by comparing the predicted dynamics using 
two different grids (fine and coarse), with sizes differing by a factor of two. For relatively early times 
(t< 1.0) the differences in the solutions were very small (cf., Fig. 2) but became more apparent at 
later times. These differences were also studied quantitatively by comparing computed plume heights 
(cf., Figs. 3 and 4). Comparisons were made with and without an indented free surface used to 
empirically model the shock effects. 

The use of an empirical model (cf., Fig. 1) for shock effects at the air-water surface was found to 
be critical for accurate predictions of the plume heights. For continuous line charges, the model 
accounts for the reflection of the cylindrical shock off the air-water interface by initializing the 
interface with a small channel in the water directly above the line charge. When this model was used, 
the predicted plume heights were initially lower than those observed (for t< 0.3) probably due to 
water spalled upward from the shock reflection unaccounted for in the model. At later times the 
computed plume heights eventually exceed the observed heights (cf., Figs. 5 and 6). This over 
prediction is conjectured to be caused by the lack of air resistance in the computational model. 

By also including the effects of shock interaction between discrete charges, the plume heights for 
a discrete line charge case accurately matched the observed heights using a 3-D computational model 
(see Fig. 18). In the discrete charge case, the plume heights are generally higher than with an 
equivalent line charge due to the "fingering" of the plumes between the charge locations. This 
fingering effect was reproduced by the 3-D computation using the empirical shock model (see 
Fig. 17). 

Secondary plumes are ejected (for scaled charge depths O0.5) for line charges and single 
discrete charges. For discrete charges, secondary (radial) plumes were first accurately predicted in 
Ref. 2. For continuous line charges, the emergence of secondary plumes has been observed and 
accurately predicted in this study (see Figs. 7 and 8). These secondary plumes were also predicted 
using the 3-D model (see Fig. 19). This computation also demonstrated the cylindrical shape of the 
merged bubbles during their first expansion. 
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Comparisons of computed and measured plume densities were unfortunately less successful. The 
computations predicted significantly less density in the plume than the amounts determined using the 
microwave absorption measurements (see Figs. 9 and 10). However, the computations predicted 
either more (see Fig. 12) or roughly the same (see Fig. 11) total amount of water in the plume as 
determined by the conductivity probe measurements. The disagreement of the measured results, due 
to the measurement techniques and the lack of calibration, undermines their use as a validation tool 
for the computations. 

The optimal depth study was complicated by the relative unsmoothness of the results as a 
function of depth (cf., Fig. 14). Even when the results were regularized, several relative maxima 
appeared Furthermore, the results were dependent on both the measure used and the height at which 
the densities were integrated. For the range of depths studied (0.1 < C<2.2), three relative maxima 
appeared consistently for all the cases considered. Conjectures were made to explain these relative 
maxima but were not verified by either additional computational or experimental tests. 

Improvements in the predictive model can be made in several ways. One improvement would be 
to eliminate the empirical conditions used for the initial conditions, using a validated code which 
includes compressible effects for the water region. The compressible code would need to be run for 
only a relatively short duration until the shock and reflected rarefaction wave are sufficiently far 
from the initial charge location. After this time, the results of the compressible code could be used as 
initial data for the currently used BUB2D or BUB3D codes. Another relatively straightforward 
improvement would be the inclusion of a model for the "air". In the current model, the air is simply 
a void with uniform density. Treating the air as a second incompressible species, with a prescribed 
density, may yield more accurate late-time plume feature predictions. 
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